CAPACITIES*

By
FRriTZ LOWENSTEIN

) MEICETRIC AL L.
As the seat of energy of an electrical field is in the space

outside of the charged bodies we will consider the shape and
concentration of the field only, but not that of the body itself.
This distinction is necessary because capacities are usually
attributed to the bodies charged, whereas the energy is excluded
from that space which is.occupied by the body. Considering
the space between two charged bodies ais the only seat of energy,
the expression ‘“‘charged body” is best replaced by “terminal
surface” of the field.

Comparing geometrically similar elements of two gco-
metrically similar ficlds. the elementary ecapacities are pro-
portional to lineal dimensions. (Sec Figure 1.)
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FiGure 1

Extending this law over the entire ficld by the integrating
process. we find that geometrically similar fields have capacities
proportional to the lineal dimensions of the terminal surfaces.
It is to be expected. therefore, that capacities expressed in
dimensions of terminal =urfaces should be of lineal dimensions.

That the capacity is by no meansa function of the volume of
the field or of the terminal hody may- be easily seen from Figure 2
where a field element is increased to double the volume by adding

° Prcst.:nted before The Institute of Radio Engineers, New York, Decem-
ber 1, 1915.
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volume in the direction of the field lines and in a direction per-
pendicular to the lines. In the first case the capacity has been
decreased whereas in the latter case increased, altho in both
cases the volumetric increase is the same.

FiGrre 2

It is seen. therefore, that instead of being dependent on the
volume, the capacity is rather a function of lineal dimension
and therefore the maximum lineal dimension predomirates.

An interesting example of this predominating lineal dimension
or “maximum reach” is given by the composite capacity of two
wires joining at one end under various angles, as shown in

Figure 3.

Ficure 3

When the angle is <mall the composite capacity is practically
the same as that of the xingle wire, since the addition of the
second wire has not increased the maximum reach. .If the
second wire B be joined to 4 at an angle of 180 degrees, which
means in straight continuation of wire A the total capacity has
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oubled, as the maximum reach now is twice that of the single
wire. We notice also that by deviating wire B slightly from the
traight continuation of wire A, the maximum reach of the
system is not materially altered, from which one may correctly
conclude that turning the wire B thru an appreciable angle b
does not materially change the capacity of the system. On the
other hand a great change of maximum reach is produced by
variations of the angle when the two wires are approximately
perpendicular, and in fact the capacity of the total structure is
most sensitive to changes of angle between the two clements at
about 90 degrees.
In Figure 4, I have given a table of capacities per centimeter
of the greater lineal dimension of the different confizurations.

Cc=321

c=201

—_————a
C=101
Ficrrr 4

In Figure 5 the wire 4 B is assumed to be moved by the
variable abscissae z, thereby generating a conducting sheet S.
It is instructive to follow the variation of the eapacity (.
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At z=# the capacity is that of the wire C,,; as long as z
is small the capacity is practically constant because the width
of the sheet is small compared to the length A B and a change
of z does not involve a change of the predominating lineal
dimension; however, as z increases and finally becomes greater
than .4 B, it assumes the part of the predominating dimension,
and, indeed, the graph shows the capacity then to be propor-
tional to z.

. i .S//f////

Comparing the capacities of a sphere and of a wire, it is
found that the capacity of the sphere is only three or four times
as great as the capacity of the wire in spite of the million times
greater volume.

I have spoken of the capacities of a wire and of other bodies
instead of the capacity of the field simply because I do not wish
to distract attention from the familiar conceptions. Let me
aralyze the field shown in Figure 6, having two concentric
spheres a= terminal surfaces, and defining as ‘‘volumetric energy -
density” the energy contained in one cubic centimeter. As the
energy of a field element is made up of the product of potential
along the linex of force within that element and of the number
of lires traversing it, the cnergy of a cubic centimeter of electric
field is proportional to the square of the field density. Since the -
field density diminishes as the square of the distance from the
center of field, the volumetric energy density diminishes with
the fourth power of the distance from the center. The diagram
to the left in Figure 6 shows the decrease of volumetric energy
den=ity.

Of greater interest than the volumetric energy density is the
lineal energy density, whichmay bedefined as the energy contained
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Ficrere 6

in a spherical laver of one centimeter radial thickness; and ax
the volume of such layer increases with the square of the distance
from the center. the law follows from thix fact. and from the
volumetric energy density law that the lineal eneregy density
decreases inversely as the square of the distance from the center.
Such deperdence is graphically shown to the right in Figure 6.
The shaded surface below this curve represents the total energy
of the field and it is casily ~een therefrom that the maximum
encrgy of the field is concentrated near the smaller of the two
spheres.

I have taken a simple case of a field with spherical terminal
surfaces to show that the concentration-of energy- lies rear the
smaller terminal surface. Similar considerations can ke applied
when substituting for this field radiating three<dimensionally.
a ficld of bi-dimensional radiation {as that occurring in the case
of long cylindrical terminal surfaces); where, as in this instance,
the bulk of the energy of the field is to Lie found near the smaller
ore of the two terminal surfaces.

In Figure 7. I have shown a ficld with concentrie termiral
surfaces (cither spherical or evlindrieal), and have increased the
scope of the field by reducing the size of the smaller terminal
surface without, however, changing cither the total number of
ficld lines or the larger terminal surface. As the lineal encrgy
density ix very great near the smaller terminal surface, such
addition of the field at that point must have materially inereased
the energy of the field and the change in capacity to he expected
should Le considerable. In fact, a considerable change in capacity
of a sphere ix obtained by a change of its diameter.

If. in Figure 7 the larger termiral surface alone is changed,
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even materially, the total energy of the field will be increased
very slightly only; due to the fact, as we have seen, that the
energy density near the larger terminal surface is very small.
Such a small change in energy corresponds to only a small
change in the capacity of the field, from which we conclude:

Fi1GeTRE 7

In a field having two terminal surfaces of greatly different
size. a change of the smaller surface produces a great change in
capacity, whereas a change of the larger terminal surface affects
the capacity of the field only very slightly. The capacity of a
field is, therefore, almost entirely determined by the shape of
the smaller terminal surface.

That is why we may with correctress speak of the capacity
of a sphere, or any other body, without mentioning the size and
shape of the other termiral surface, as long as the assumption
i« correct that such other termiral surface is of greatly larger
dimensions.

It may not be ami== to call your attention to the fact that
the increase of field energy as illustrated in Figure 7 is accom-
panied by a decrease in eapacity. This relation may easily
be deduced from phy=ical considerations, as well as from con-
sideration of the mathematical expression for the capacity

¢ where ¢ =total field lines
322 I =energy,
wherein the capacity is expressed as a property of the field alone.
I am tempted to introduce here the reciprocal value of capacity
and apply to it the term “‘stiffness of the field,” as an increase
of energy would be followed by an increase of stiffness. I am,

C=
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however, loath to mar any additional insight which may be
gained from these explanations by deviation from so familiar
a term as capacity.

For a better conception of the slight change of capacity
caused by a considerable increase of the larger terminal surface,
I refer to Figure 7, where the difierence of capacity is only
1 per cent in spite of the diameter of the larger terminal surface
being increased 100 per cent. It appears, therefore, that that
part of the capacity of an antenna which ix due to the flat top is
not materially changed by its height above ground.

While considering the capacity of a flat top antenna to
ground, it must have occurred to many engineers, as it did to
me, that the statement to be found in many text books on electro-
statics is rather misleading: “That the frce capacity of a body
considered alome in space must not be confounded with the
capacity the body may have against another body corsidered
as a plate condenser.”” This statement is quite erroneous. As
the strength and direction in any point of a ficld is of single and
definite value, only one electric field can exist in a given space
at a given moment. and, therefore. only one value of eapacity,
It is incorrect, thercfore, to distinguish bhetween free capacity
and condenser capacity. This clarifving statement is deemed
advisable, or at least permissible, in view of the quoted errors.

By speaking of the capacity of the field instead of that of the
body, no such erroneous thought is possible, and it is clear that
by free capacity of a body is meant the capacity of the ficld
whose smaller terminal surface is the given body and whose
larger terminal surface is one of vastly greater dimensions.
It is not essential that this greater términal surface be located
at infinite distance, becausc of the fact that even if construed
as of ten times the lineal dimensions of the small surface the
change caused by removing it to an infinite distance would
result in a change in capacity of not more than one-tenth of
1 per cent.

At a time when I had not realized the singly determined
value of a field capacity, I considered a comparison between free
and plate capacity as shown in Figure 8, wherein to an upper

: . . S
dixe (of which the free capacity is =), was added another lower

disc, thereby forming a plate condenser. The problem arose in

my mind to determine the distance of separation of the two

plates o that the plate capacity would equal the free capacity

of the single disc. From the well-known formulas for the disc
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FI1GURE 8

capacity and plate capacity, it would appear that the two were
equal at a distance equal to d= gr, and I must confess that

I had quite a struggle to decide whether in speaking of the
capacity of the upper plate I would not have to add the two
capacities. While such a mistake need hardly be called to the
attention of the majority of engineers, I do not hesitate to make
mention of it for the bencfit of even the few students who might
gain therefrom.

The advent of the aeroplane has opened another field, for
radio communication. Whereas in the static field of an antenna,
one terminal surface is artificial and the other provided by the
surrounding ground, both terminal surfaces in an aeroplane
outfit have to be artificial and are, therefore, open to design.
The question arises in such a radio oscillator as to how much
may be gained in energy for each single charge by increasing
that one of the two terminal surfaces which consists of a dropped
wire. The arrangement is shown in Figure 9. It is evident that

FiGtRre 9
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as long as the dropped wire is of smaller dimensions than the
electrostatic counterpoise provided on the aeroplane, an increase
in length of such dropped wire will materially increase the
capacity of the field and, therefore, the energy per charge (as
we may conclude by analogy from Figure 7). As soon, however,
as the dropped wire is materially longer than the conductor
on the aeroplane it assumes the role of the larger terminal
surface of the field, and any further increase of its length will
not materially contribute to an increase of electrostatic capacity
nor of the energy per unit charge.

Figure 10 shows the function of the volumetric and lineal
energy density in a field whose smaller terminal surface is a long
cylinder. Such a field, radiating bi-dimensionally only, shows
an energy concentration not so accentuated as that found in the

Ficure 10

tri-dimensionally radiating field; but considering the larger
terminal surface of a diameter ten times that of the smaller
surface, the capacity would only be changed 1 per cent by
increasing the larger terminal surface infinitely.

In all cases, therefore, where the larger terminal surface
does not come closer at any point than (say) ten times the
corresponding dimension of the smaller terminal surface, we
need not be concerned with the actual shape of the larger terminal
surface when we determire the seat of energy, the capacity and
the configuration of the field lines emanating from the smaller
surface. It will be seen, therefore, that from the flat top of an
antenna, lines emanate almost symmetrically both upwards and
downwards as though the larger terminal surface were one™
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surrounding the antenna symmetrically on all sides, in spite of
the fact that the ground is located entirely at the bottom of the
antenna. This is clearly illustrated in Figure 11.

By integrating the lineal energy density of a three-dimen-
sionally radiating field between the radius of the smaller sphere

# Sy

f
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and that of the larger sphere, we can find the energy of such a
field: whereby the capacity is determined. The lineal energy

- density follows the law of .:.:. and its integral is proportional

to :; and consequently the capacity of the field varies as r.

We have deduced, therefore, the capacity of a sphere from
properties of the field alone, considering the sphere as a terminal
surface only. .

In deducing similariy the capacity of the wire from properties
of the field alone. we have to start with the bi-dimensionally
radiating field the lineal energy density of which follows the

law ’l_ as we have seen. The integral of such function is of

logarithmic nature. as indeed is the capacity of the wire.

[ wish to call your attention to the fact that in a sphere
segments of the same projected axial length contribute equally
to the capacity of the sphere, as shown in Figure 12.

If a charge wer- made to enter a sphere and traverse the
sphere in the direction of a diameter, the sphere as a conductor
would behave like a straight piece of wire of uniform lineal
capacity. This fact was first recognized, to my knowledge, by
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Figurre 12

Mr. Nikola Tesla, and [ expect to come back to the behavior of a
sphere as a conductor of radio frequency currents at some
later date.

The study of capacities of composite hodies is most in-
structive and conducive to a clear conception of capacity.
Let. as in Figure 13, a number of small spheres of radius be <o
arranged as to cover completely the surface of the larger
sphere, the radius I of which be 100. If each one of the

Ficrre 13

31400 =maller spheres could be ceounted at its full value of
capacity. the capacity of the composite body would be 31,400;
as a matter of fact, however. it is not more than radius R of
the larger sphere, that is 100. Indeed, the configzuration of
the clectric field F could not have changed materially by the
arrangement of the small <pheres, and the capacity clearly
presents itself as a property of the configuration of the field
lving outside of the enveloping surface of the composite

structure.
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Capacity may play a part in the conduction of electricity
thru liquids and gases. Let us assume a series of spheres in
lineal arrangement as shown on Figure 14.

As long as the distance between the spheres is great com-
pared to the diameter of the spheres, each sphere will retain its
full capacity as given by its radius. By decreasing the distance

® & o o

b
00dbooo00o

ﬁfbﬁéooo

Figrre 14

between spheres the individual capacities of the spheres decrease,
because of the negative capacity coefficients. If such approxima-
tion be carried to the point of contact between the spheres, the
capacity of each individual sphere would be reduced to ap-

proximately 1 of the original capacity. If such a row of spheres

were conceived as freely movable, so as to enable each sphere to
make contact with a plate P, which is kept charged to a certain
potential, then the charges carried away by the spheres after
contact with the plate would be proportional to the full capacity
of each sphere as long as the spheres are far apart, and would
be only 1.
¢ 2718
spheres arc in contact. As we assumed the plate P to be main-
tained at a certain potential by an outside source of electricity,
the convection current represented by the departing charges
of the spheres would vary approximately in a ratio of 2.71 to 1:

In the passage of electricity thru an electrolyte, the molecular
conductivity has heen found to be the same for all electrolytes,
and varyving only with the concentration of the solution; the
molecular conductivity being approximately 2.5 times as great
in the very dilute solution as in the concentrated solution.

I wish to call your attention to the striking similarity between
the ratio of conductivity experimentally determined in elec-

2 :
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trolytes of small and large concentration and the ratio of con-
ductivity of the row of spheres where the spheres are far apart
or close together. I do not pretend at this moment that a
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plausible modification of the theory of conduction thru elec-
trolytes and gases can be based on such a coincidence; and in
fact, assumptions would have to be made. For example, a
lincal arrangement of the ions in the dircetion of the static field
impressed on the electrolyte or on the gas must.-be assumed.

FORMIC ACID H=CO0—H . N
METHYL FORMIATE  H—COO —C ™,

]
‘T\\ YL - H=COO=CH, 2
On,.,,c 1SOBUTYL - H-COO—CH, 4
| ACiD wrzns AMYL - w-co0cH, 5
ACETIC ACID ESTERS
ACETIC ACID CcHy- coo-H
ETHYL ACETATE CH;COO-GH, 2
PROPL = CHyCOO-GH, 3

5 N or me aukn

FI1GURE 16

But the fact that such ratio in the case of the spheres is deduced

from geometrical considerations alone. coupled with the fact

that in electrolytes the same ratio follows from purely geometrical

considerations, is sufficient to warrant further thought. I do not

hesitate to bring this interesting coincidence to your knowledge,

with the hope that other physicists may carry on investigations
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in the same direction. I have said that the molecular con-
ductivity of electrolytes arose from geometrical considerations
only, and I think it advisable to call your attention to the founda-
tion of such a statement. While it is true that the conductivity
of different electrolytes varies considerably, it has been found
that the molecular conductivity is the same for all electrolytes.
The similar behavior, of the same number of molecules, in-
dependently of the weight of the molecule. therefore reduces the
phenomenon to a purely geometric basis.

SUMMARY: Considering that electrostatic energy is actually in the space
surrounding a charged body, the latter is called a “taminal surface.” It is
shown that capacity is predominantly a function of the maximum lineal
dimension of the terminal surface. The volumetric and lineal energy den-
sities in the field are defined and studied in a number of cases. It is proven
that the capacity between two terminal surfaces is greatly affected by chang-
ing the lineal dimensions of the smaller taminal surface, but not so for
changes of the larger. Certain current errors in ccnmnection with ‘*‘mutual
-capacity’ are considered.

The practical applications to a radio antenna and to aeroplane counter-
poises are given.

When a charge traverses a sphere, entering parallel to a diameter, the
sphere behaves as a conductor of uniform lineal capacity.

Applications of the theoretical considerations are also given in connec-
tion with the conductivity of concentrated and dilute electrolytes.



